Now assume that the population standard deviation of the ex
Now assume that the population standard deviation, , of the existing machine diameter measurements is not known (but still normally distributed). Using sample mean 5.00 mm, sample standard deviation 0.028 mm and sample size
100, compute the following and include units in your answers:
a) A 95% twosided confidence interval for the true mean bolt diameter, .
b) A 99% upper confidence bound for the true mean bolt diameter, .
Solution
a)
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    5          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    0.028          
 n = sample size =    100          
               
 Thus,              
               
 Lower bound =    4.994512101          
 Upper bound =    5.005487899          
               
 Thus, the confidence interval is              
               
 (   4.994512101 mm   ,   5.005487899 mm   ) [ANSWER]
********************
B)
Note that              
               
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    5          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    0.028          
 n = sample size =    100          
               
 Thus,              
               
 Upper bound =    5.007212322 mm [ANSWER]   

