Millions of North Americans including Canadians now arrange
Solution
a)
Here,
mean = 0.77
 standard deviation = sqrt(p (1-p)/n) = sqrt(0.77*(1-0.77)/200) = 0.029757352
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    0.75      
 x2 = upper bound =    0.8      
 u = mean =    0.77      
           
 s = standard deviation =    0.029757352      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -0.672102813      
 z2 = upper z score = (x2 - u) / s =    1.00815422      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.250759123      
 P(z < z2) =    0.843309784      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.592550661   [ANSWER]
*********************
b)
It is like asking the probability of p < 170/200 = 0.85.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    0.85      
 u = mean =    0.77      
           
 s = standard deviation =    0.029757352      
           
 Thus,          
           
 z = (x - u) / s =    2.688411254      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   2.688411254   ) =    0.003589646 [ANSWER]
************************
c)
The probability in B is unlikely if the proportion stayed at 77%. Thus, this suggests that the increase in service fee may have influenced the increase in online buying of tickets.
**************************
d)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.85          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.025248762          
               
 Now, for the critical z,              
 alpha/2 =   0.01          
 Thus, z(alpha/2) =    2.326347874          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.791262595          
 upper bound = p^ + z(alpha/2) * sp =    0.908737405          
               
 Thus, the confidence interval is              
               
 (   0.791262595   ,   0.908737405   ) [ANSWER]
*******************************************
Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!


