Millions of North Americans including Canadians now arrange

Millions of North Americans including Canadians now arrange their travel plans on the Web. According to an article in USA Today, 77% of travelers purchased plane tickets online.

Solution

a)

Here,

mean = 0.77
standard deviation = sqrt(p (1-p)/n) = sqrt(0.77*(1-0.77)/200) = 0.029757352

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    0.75      
x2 = upper bound =    0.8      
u = mean =    0.77      
          
s = standard deviation =    0.029757352      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.672102813      
z2 = upper z score = (x2 - u) / s =    1.00815422      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.250759123      
P(z < z2) =    0.843309784      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.592550661   [ANSWER]

*********************

b)

It is like asking the probability of p < 170/200 = 0.85.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    0.85      
u = mean =    0.77      
          
s = standard deviation =    0.029757352      
          
Thus,          
          
z = (x - u) / s =    2.688411254      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2.688411254   ) =    0.003589646 [ANSWER]

************************

c)

The probability in B is unlikely if the proportion stayed at 77%. Thus, this suggests that the increase in service fee may have influenced the increase in online buying of tickets.

**************************

d)

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.85          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.025248762          
              
Now, for the critical z,              
alpha/2 =   0.01          
Thus, z(alpha/2) =    2.326347874          
Thus,              
              
lower bound = p^ - z(alpha/2) * sp =   0.791262595          
upper bound = p^ + z(alpha/2) * sp =    0.908737405          
              
Thus, the confidence interval is              
              
(   0.791262595   ,   0.908737405   ) [ANSWER]

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

 Millions of North Americans including Canadians now arrange their travel plans on the Web. According to an article in USA Today, 77% of travelers purchased pla
 Millions of North Americans including Canadians now arrange their travel plans on the Web. According to an article in USA Today, 77% of travelers purchased pla

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site