Families USA a monthly magazine that discusses issues relate
Families USA, a monthly magazine that discusses issues related to health and health costs, surveyed 19 of its subscribers. It found that the annual health insurance premiums for a family with coverage through an employer averaged $10,500. The standard deviation of the sample was $1,060. (Use z Distribution Table.)
Based on this sample information, develop a 90% confidence interval for the population mean yearly premium. (Round your answers to the nearest whole number.)
How large a sample is needed to find the population mean within $250 at 99% confidence? (Round up your answer to the next whole number.)
| a. | Based on this sample information, develop a 90% confidence interval for the population mean yearly premium. (Round your answers to the nearest whole number.) | 
Solution
A)
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    10500          
 z(alpha/2) = critical z for the confidence interval =    1.64          
 s = sample standard deviation =    1060          
 n = sample size =    19          
               
 Thus,              
 Margin of Error E =    398.8163118          
 Lower bound =    10101.18369          
 Upper bound =    10898.81631          
               
 Thus, the confidence interval is              
               
 (   10101.18369   ,   10898.81631   ) [ANSWER]
******************
B)
Note that      
       
 n = z(alpha/2)^2 s^2 / E^2      
       
 where      
       
 alpha/2 = (1 - confidence level)/2 =    0.005  
       
 Using a table/technology,      
       
 z(alpha/2) =    2.58  
       
 Also,      
       
 s = sample standard deviation =    1060  
 E = margin of error =    250  
       
 Thus,      
       
 n =    119.6660966  
       
 Rounding up,      
       
 n =    120   [ANSWER]


