Scores on a recent national statistics exam were normally di

Scores on a recent national statistics exam were normally distributed with a mean of 80 and standard deviation of 6. 1. What is the probability that a randomly selected exam will have a score of at least 71, 2. what percentage of exam will have scores between 89 and 92, and if the top 2.5 % of the teast scores receive merit awards, what is the lowest score accepted?

Solution

1.

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    71      
u = mean =    80      
          
s = standard deviation =    6      
          
Thus,          
          
z = (x - u) / s =    -1.5      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   -1.5   ) =    0.933192799 [ANSWER]

*************

2.

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    89      
x2 = upper bound =    92      
u = mean =    80      
          
s = standard deviation =    6      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    1.5      
z2 = upper z score = (x2 - u) / s =    2      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.933192799      
P(z < z2) =    0.977249868      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.044057069   [ANSWR, BETWEEN 89 AND 92]

*******************

3.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.975      
          
Then, using table or technology,          
          
z =    1.959963985      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    80      
z = the critical z score =    1.959963985      
s = standard deviation =    6      
          
Then          
          
x = critical value =    91.75978391   [lowest score with merit]

Scores on a recent national statistics exam were normally distributed with a mean of 80 and standard deviation of 6. 1. What is the probability that a randomly
Scores on a recent national statistics exam were normally distributed with a mean of 80 and standard deviation of 6. 1. What is the probability that a randomly

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site