Scores on a recent national statistics exam were normally di
Scores on a recent national statistics exam were normally distributed with a mean of 80 and standard deviation of 6. 1. What is the probability that a randomly selected exam will have a score of at least 71, 2. what percentage of exam will have scores between 89 and 92, and if the top 2.5 % of the teast scores receive merit awards, what is the lowest score accepted?
Solution
1.
We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
           
 x = critical value =    71      
 u = mean =    80      
           
 s = standard deviation =    6      
           
 Thus,          
           
 z = (x - u) / s =    -1.5      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   -1.5   ) =    0.933192799 [ANSWER]
*************
2.
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    89      
 x2 = upper bound =    92      
 u = mean =    80      
           
 s = standard deviation =    6      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    1.5      
 z2 = upper z score = (x2 - u) / s =    2      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.933192799      
 P(z < z2) =    0.977249868      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.044057069   [ANSWR, BETWEEN 89 AND 92]
*******************
3.
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.975      
           
 Then, using table or technology,          
           
 z =    1.959963985      
           
 As x = u + z * s / sqrt(n)          
           
 where          
           
 u = mean =    80      
 z = the critical z score =    1.959963985      
 s = standard deviation =    6      
           
 Then          
           
 x = critical value =    91.75978391   [lowest score with merit]


