4 10 In a survey of 250 voters prior to an election 40 indic
4. [10] In a survey of 250 voters prior to an election, 40% indicated that they would vote for the incumbent candidate. Construct a 95% confidence interval for the population proportion of voters who support the incumbent.
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.4          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.030983867          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.060727263          
 lower bound = p^ - z(alpha/2) * sp =   0.339272737          
 upper bound = p^ + z(alpha/2) * sp =    0.460727263          
               
 Thus, the confidence interval is              
               
 (   0.339272737   ,   0.460727263   ) [ANSWER]
![4. [10] In a survey of 250 voters prior to an election, 40% indicated that they would vote for the incumbent candidate. Construct a 95% confidence interval for  4. [10] In a survey of 250 voters prior to an election, 40% indicated that they would vote for the incumbent candidate. Construct a 95% confidence interval for](/WebImages/21/4-10-in-a-survey-of-250-voters-prior-to-an-election-40-indic-1049497-1761546424-0.webp)
