Lasers are used to inspect solderjoint defects on printed ci
Lasers are used to inspect solder-joint defects on printed circuit boards (PCB). A manufacturer of a laser-based inspected equipment claims that its product can inspect at least 10 solder-joints per second. But a potential buyer does not agree. Here are the number of solder-joints inspected on each run:
10 9 10 7 12 7 10 7 10 8 8 11 8
1) Does the data support the buyer? State all the hypothesis testing steps and use = 0.01.
2) Find the p-value.
3) Form a 95% confidence interval for the population mean value of solder-joints inspected.
Solution
1.
Formulating the null and alternative hypotheses,              
               
 Ho:   u   >=   10  
 Ha:    u   <   10  
               
 As we can see, this is a    left   tailed test.      
               
 Thus, getting the critical t,              
 df = n - 1 =    12          
 tcrit =    -   2.680997993      
               
 Getting the test statistic, as              
               
 X = sample mean =    9          
 uo = hypothesized mean =    10          
 n = sample size =    13          
 s = standard deviation =    1.632993162          
               
 Thus, t = (X - uo) * sqrt(n) / s =    -2.207940217          
As |t| < 2.680997, we FAIL TO REJECT THE NULL HYPOTHESIS.
Thus, there is no sufficient evidnece to support the buyer\'s claim. [CONCLUSION]
*****************
2.  
               
 Also, the p value is              
               
 p =    0.023727816   [ANSWER]
*********************
3.
Note that              
               
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    9          
 t(alpha/2) = critical t for the confidence interval =    2.17881283          
 s = sample standard deviation =    1.632993162          
 n = sample size =    13          
 df = n - 1 =    12          
 Thus,              
               
 Lower bound =    8.013192109          
 Upper bound =    9.986807891          
               
 Thus, the confidence interval is              
               
 (   8.013192109   ,   9.986807891   ) [ANSWER]
       
               
   


