The mileage in thousands of miles that car owners get with a
The mileage (in thousands of miles) that car owners get with a certain kind of radial tire is normally distributed with a mean of 45,000 and a standard deviation of 3,000 miles, respectively.
A.) To 4 decimal places what is the probability that a tire will last for more than 50,000 miles?
B.) To 4 decimal places what is the probability that a tire will last for no more than 35,000 miles?
C.) To the nearest mile, 90% of the tires will last for how many miles?
Solution
a)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    50000      
 u = mean =    45000      
           
 s = standard deviation =    3000      
           
 Thus,          
           
 z = (x - u) / s =    1.666666667      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.666666667   ) =    0.047790352 [ANSWER]
******************
b)
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    35000      
 u = mean =    45000      
           
 s = standard deviation =    3000      
           
 Thus,          
           
 z = (x - u) / s =    -3.333333333      
           
 Thus, using a table/technology, the left tailed area of this is          
           
 P(z <   -3.333333333   ) =    0.00042906 [ANSWER]
**********************
c)
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.9      
           
 Then, using table or technology,          
           
 z =    1.281551566      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    45000      
 z = the critical z score =    1.281551566      
 s = standard deviation =    3000      
           
 Then          
           
 x = critical value =    48844.6547   [ANSWER]  


