Use the trigonometric identities to find sin x tan x and cot
Use the trigonometric identities to find sin x, tan x, and cot(-x), given cos x = 5/4 and x in quadrant IV. Given tan x = - 5/4. where pi/2 
Solution
Solution:
given sinx=-1/2
x and y an third quadrant .tan and cot are positive.rest all trigonometric ratios are negative
sinx=opp side /hypotenuse.=-1/2
hyp2 =opp2 + adj 2
adj 2 =hyp2 -opp2
=22 -12
=4-1=3
adj= 3
cosx= -3/2
tanx=sinx/cosx=-1/2/-3/2=1/3
cotx=1/tanx=3
cosy=-2/5
cosy=adj/hyp=-2/5
adj=2 hyp=5
hyp2 =adj2 +opp2
opp2 = hyp2 -adj2 =52 -22 25-4=21
opp=21
siny=opp/hyp=-21/5
tany=siny/cosy=(21/5)/2/5
=21/2
coty=1/tany=2/21
sin(x+y)=sinxcosy+cosxsiny
=(-1/2)(-2/5)+ (-3/2)-21/5
=1/5+63/10
=2+63/10
cos(x-y)=cosxcosy+sinxsiny
= -(3/2).(-2/5)+(-1/2)(-21/5)
=3/5+21/10
=23+21/10
take 3 common
3(2+7)/10
tan(x+y)=tanx+tany/(1-tanxtany)
=(1/3)+(21/2)/1-(1/3)(21/2)

