log3 2x log89 3x 1Solutionlog32x log93x 1 Use the followin
     log_3 (2x) + log_89 (3x) = 1 
  
  Solution
log3(2x) +log9(3x) =1
Use the following log properties:
Now loga(X) = logX/loga
Further, logx^a = a*logx
So, log3(2x) + log(3x)/log9 = 1
log3(2x) +log(3x)/log3^2 =1
log3(2x) +log(3x)/ 2*log3 =1
So, log3(2x) + (1/2)log3(3x) =1
log3(2x) + log3(3x)^1/2 =1
log3{ 2x*(3x)^1/2} =1
log3(2*3^1/2*x^3/2 )=1
Use the exponential property: loga(x) =b
x = a^b
So, 2*3^1/2*x^3/2 = 3
squaring both sides: 4*3*x^3 = 9
x^3 = 9/12 = 3/4
x = (3/4)^1/3

