Confidence Interval for proportions A survey of 50 firsttime
 (Confidence Interval for proportions) 
 A survey of 50 first-time white-water canoers showed that 23 did not want to repeat the experience.
 A) find a 90% confidence interval of the true proportion of canoers who did not wish to canoe the rapids a second time. (Hint: critical value can be found in the Z-table by using probability 0.95).
  (Confidence Interval for proportions) 
 A survey of 50 first-time white-water canoers showed that 23 did not want to repeat the experience.
 A) find a 90% confidence interval of the true proportion of canoers who did not wish to canoe the rapids a second time. (Hint: critical value can be found in the Z-table by using probability 0.95).
 A survey of 50 first-time white-water canoers showed that 23 did not want to repeat the experience.
 A) find a 90% confidence interval of the true proportion of canoers who did not wish to canoe the rapids a second time. (Hint: critical value can be found in the Z-table by using probability 0.95).
Solution
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.46          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.070484041          
               
 Now, for the critical z,              
 alpha/2 =   0.05          
 Thus, z(alpha/2) =    1.644853627          
 Thus,              
               
 lower bound = p^ - z(alpha/2) * sp =   0.34406407          
 upper bound = p^ + z(alpha/2) * sp =    0.57593593          
               
 Thus, the confidence interval is              
               
 (   0.34406407   ,   0.57593593   ) [answer]

