The average selling price of a smartphone purchased by a ran
The average selling price of a smartphone purchased by a random sample of 34 customers was $324 Assume the population standard deviation was $31.
a. Construct a 95% confidence interval to estimate the average selling price in the population with this sample.
b. What is the margin of error for this interval?
a. The 95% confidence interval has a lower limit of $? and an upper limit of $?
(Round to the nearest cent as needed.)
b. The margin of error is $?
(round to nearest cent as needed)
Solution
A)
Note that              
               
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    324          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    31          
 n = sample size =    34          
               
 Thus,              
               
 Lower bound =    313.5799374          
 Upper bound =    334.4200626          
               
 Thus, the confidence interval is              
               
 (   313.5799374   ,   334.4200626   ) [ANSWER]
**********************
B)
Margin of error = (upper bound - lower bound)/2 = 10.42006256 [ANSWER]

