y3y10y6e2t Solve the IVP y02 y00 y3y10y6e2t Solve the IVP y0
Solution
Given that
y\"- 3y\' - 10y= 6e(-2t) , y(0) = 2 , y\'(0) = 0
D-operator form of given equation is
( D2 - 3D - 10 ) y = 6e(-2t) .......................1
Auxialary equation is,
m2 - 3m - 10 = 0
( m - 5 ) ( m + 2 ) = 0
m = 5 , -2
Hence,
The roots are real and distinct
complementary function yc = c1e5t + c2e-2t
For a non homogeneous part g(x) = 6.e-2t , assume perticular solution yp = Ate-2t
Substitute yp in equation 1
( D2 - 3D - 10 ) y = 6e(-2t)
( D2 - 3D - 10 ) Ate-2t = 6e(-2t)
D2( Ate-2t ) - 3D( Ate-2t) - 10Ate-2t = 6e(-2t) ............................2
D( Ate-2t ) = A D( te-2t )
= A [ d/d(t) .(e-2t) + t.d/dt(e-2t) ]
= A [ 1. (e-2t) + t . (e-2t).-2 ]
= A [ (e-2t) - 2t.(e-2t) ]
D2( Ate-2t ) = D [ A [ (e-2t) - 2t.(e-2t) ]
= A D[ (e-2t) - 2t.(e-2t) ]
= A [ 4te-2t - 4e-2t ]
From 2
D2( Ate-2t ) - 3D( Ate-2t) - 10Ate-2t = 6e(-2t)
A [ 4te-2t - 4e-2t ] -3A [ (e-2t) - 2t.(e-2t) ] - 10Ate-2t = 6e(-2t)
4Ate-2t - 4Ae-2t - 3Ae-2t + 6Ate-2t -10Ae-2t = 6e(-2t)
10Ae-2t - 10Ae-2t - 7Ae-2t = 6e(-2t)
- 7Ae-2t = 6e(-2t)
Equating the coefficients
-7A = 6
A = - 6 / 7
Hence,
Perticular solution yp = Ate-2t
yp = (-6/7)te-2t
General solution y(t) = yc + yp
y(t) = c1e5t + c2e-2t +(-6/7)te-2t .......................................3
y(0) = 2 , i.e at t=0 y = 2
y(0) = c1e5(0) + c2e-2(0) +(-6/7).0.e-2(0)
2 = c1.1 + c2.1 + 0
c1 + c2 = 2.....................................................4
y\'(0) = 0, i.e at t=0 y\' = 0
y(t) = c1e5t + c2e-2t +(-6/7)te-2t
y\'(t) = c1.e5t.5 + c2.e-2t.(-2) + (-6/7) [ (e-2t) - 2t.(e-2t) ]
y\'(t) = 5c1e5t -2c2e-2t + (-6/7) [ (e-2t) - 2t.(e-2t) ]
y\'(0) = 5c1e5(0) -2c2e-2(0) + (-6/7) [ (e-2(0)) - 2(0) .(e-2(0)) ]
0 = 5c1 - 2c2 - ( 6/7 )
5c1 - 2c2 = 6/7
35c1 - 14c2 = 6........................................................................5
solve equations 4 and 5
c1 + c2 = 2
35c1 - 14c2 = 6
On solving
c1 = 34/49 , c2 = 64/49
Substitute c1 ,c2 in equation 3
y(t) = c1e5t + c2e-2t +(-6/7)te-2t
y(t) = (34/49)e5t + (64/49)e-2t - (6/7)te-2t



