y3y10y6e2t Solve the IVP y02 y00 y3y10y6e2t Solve the IVP y0

y\"-3y\'-10y=6e^(-2t)
Solve the IVP
y(0)=2
y\'(0)=0
y\"-3y\'-10y=6e^(-2t)
Solve the IVP
y(0)=2
y\'(0)=0
y\"-3y\'-10y=6e^(-2t)
Solve the IVP
y(0)=2
y\'(0)=0

Solution

Given that

  y\"- 3y\' - 10y= 6e(-2t) , y(0) = 2 , y\'(0) = 0

D-operator form of given equation is

( D2 - 3D - 10 ) y = 6e(-2t) .......................1

Auxialary equation is,

m2 - 3m - 10 = 0

( m - 5 ) ( m + 2 ) = 0

m = 5 , -2

Hence,

The roots are real and distinct

complementary function yc = c1e5t + c2e-2t

For a non homogeneous part g(x) = 6.e-2t , assume perticular solution yp = Ate-2t

   Substitute yp in equation 1

  ( D2 - 3D - 10 ) y = 6e(-2t)

     ( D2 - 3D - 10 ) Ate-2t = 6e(-2t)

D2( Ate-2t ) - 3D( Ate-2t) - 10Ate-2t = 6e(-2t) ............................2

D( Ate-2t ) = A D( te-2t )

= A [ d/d(t) .(e-2t) + t.d/dt(e-2t) ]

= A [ 1. (e-2t) + t . (e-2t).-2 ]

= A [ (e-2t) - 2t.(e-2t) ]

D2( Ate-2t ) = D [ A [ (e-2t) - 2t.(e-2t) ]

= A D[ (e-2t) - 2t.(e-2t) ]

= A [ 4te-2t - 4e-2t ]

From 2

    D2( Ate-2t ) - 3D( Ate-2t) - 10Ate-2t = 6e(-2t)

  A [ 4te-2t - 4e-2t ] -3A [  (e-2t) - 2t.(e-2t) ] - 10Ate-2t = 6e(-2t)

4Ate-2t - 4Ae-2t - 3Ae-2t + 6Ate-2t -10Ae-2t = 6e(-2t)

   10Ae-2t - 10Ae-2t - 7Ae-2t = 6e(-2t)

  - 7Ae-2t = 6e(-2t)

   Equating the coefficients

-7A = 6

A = - 6 / 7

Hence,

Perticular solution yp =  Ate-2t

   yp = (-6/7)te-2t

General solution y(t) = yc + yp

y(t) = c1e5t + c2e-2t +(-6/7)te-2t .......................................3

y(0) = 2 , i.e at t=0 y = 2

   y(0) = c1e5(0) + c2e-2(0) +(-6/7).0.e-2(0)

   2 = c1.1 + c2.1 + 0

c1 + c2 = 2.....................................................4

y\'(0) = 0, i.e at t=0 y\' = 0

  y(t) = c1e5t + c2e-2t +(-6/7)te-2t

   y\'(t) = c1.e5t.5 + c2.e-2t.(-2) + (-6/7) [  (e-2t) - 2t.(e-2t) ]

y\'(t) = 5c1e5t -2c2e-2t + (-6/7) [  (e-2t) - 2t.(e-2t) ]

y\'(0) = 5c1e5(0) -2c2e-2(0) + (-6/7) [  (e-2(0)) - 2(0) .(e-2(0)) ]

0 = 5c1 - 2c2 - ( 6/7 )

5c1 - 2c2 = 6/7

35c1 - 14c2 = 6........................................................................5

solve equations 4 and 5

  c1 + c2 = 2

  35c1 - 14c2 = 6

On solving

c1 = 34/49 , c2 = 64/49

Substitute c1 ,c2 in equation 3

  y(t) = c1e5t + c2e-2t +(-6/7)te-2t

   y(t) = (34/49)e5t + (64/49)e-2t - (6/7)te-2t

 y\
 y\
 y\

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site