Using the Standard Normal Distribution Table found in your t
Solution
a)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -2.14) = (-2.14-0)/1
 = -2.14/1 = -2.14
 = P ( Z <-2.14) From Standard Normal Table
 = 0.01618
 P(X < 0.89) = (0.89-0)/1
 = 0.89/1 = 0.89
 = P ( Z <0.89) From Standard Normal Table
 = 0.81327
 P(-2.14 < X < 0.89) = 0.81327-0.01618 = 0.7971                  
b)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < -1.69) = (-1.69-0)/1
 = -1.69/1 = -1.69
 = P ( Z <-1.69) From Standard Normal Table
 = 0.04551
 P(X < 1.28) = (1.28-0)/1
 = 1.28/1 = 1.28
 = P ( Z <1.28) From Standard Normal Table
 = 0.89973
 P(-1.69 < X < 1.28) = 0.89973-0.04551 = 0.8542                  
c)
 P(X > 0.88) = (0.88-0)/1
 = 0.88/1 = 0.88
 = P ( Z >0.88) From Standard Normal Table
 = 0.1894                  
 P(X < = 0.88) = (1 - P(X > 0.88)
 = 1 - 0.1894 = 0.8106                  
d)
 P(X > -1.93) = (-1.93-0)/1
 = -1.93/1 = -1.93
 = P ( Z >-1.93) From Standard Normal Table
 = 0.9732                  

