Show that if a equiv a mod m and b equiv b mod m then a b
Show that if a equiv a\' (mod m) and b equiv b\' (mod m), then a - b = a\' - b\' (mod m).
Solution
a=a\' mod m
Hence, a-a\'=km for some integer k
b=b\' mod m
Hence, b-b\'=rm for some integer r
So, a-a\'-(b-b\')=(r-k)m=0 mod m
So,
a-a\'-(b-b\')=0 mod m
a-a\'=b-b\' mod m
a=a\'+b-b\' mod m
a-b=a\'-b\' mod m
Hence proved
