Giving a normal distribution with mean 100 and standard devi
Giving a normal distribution with mean 100 and standard deviation of 20, calculate the following probabilities
Question
Answer
P(X>130) =
P(X<90) =
P(80<X<150) =
| Question | Answer | 
| P(X>130) = | |
| P(X<90) = | |
| P(80<X<150) = | 
Solution
Normal Distribution
 Mean ( u ) =100
 Standard Deviation ( sd )=20
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)              
 P(X > 130) = (130-100)/20
 = 30/20 = 1.5
 = P ( Z >1.5) From Standard Normal Table
 = 0.0668                  
 b)
 P(X < 90) = (90-100)/20
 = -10/20= -0.5
 = P ( Z <-0.5) From Standard Normal Table
 = 0.3085  
 c)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 80) = (80-100)/20
 = -20/20 = -1
 = P ( Z <-1) From Standard Normal Table
 = 0.15866
 P(X < 150) = (150-100)/20
 = 50/20 = 2.5
 = P ( Z <2.5) From Standard Normal Table
 = 0.99379
 P(80 < X < 150) = 0.99379-0.15866 = 0.8351                  

