Find the dot product for the pair of vectors 7i 6j 10i 7j
     Find the dot product for the pair of vectors. -7i + 6j, 10i - 7j  Write the complex number 3 + 4i in trigonometric form r(cos theta + I sin theta), with theta in the interval [0 degree, 360 degree)  Find the period of y = -3 cos 1/4 x  Find the exact value of y = sin^-1 (-0.5) 
  
  Solution
v1 = -7i +6j ; v2 = 10i - 7j
Dot product = v1.v2 = (-7i +6j)(10i -7j) = -70 -42 = -112
y = -3cos(x/4)
period = 2pi/ (1/4) = 8pi
y = sin^-1(-0.5)
Range of sin^-1(x) : [ -pi/2 , pi/2 ]
y = sin^-1(-0.5)
siny = -0.5
y = -pi/6

