Solve the system of differential equations by systematic eli
Solve the system of differential equations by systematic elimination. (dx/dt) + 3x + (dy/dt) = 1 (dx/dt) - x + (dy/dt) - y = e^t
I have no idea how to even start this problem. Please explain and show all steps in your solution. Thank you!
Solution
SUbtracting the two equations gives
4x+y=1-e^t
y=1-4x-e^t
Differentiating gives
dy/dt=-4dx/dt-e^t
Substituting this in first equations gives
-4dx/dt-e^t+3x+dx/dt=1
-3dx/dt+3x=1+e^t
dx/dt-x=-(1+e^t)/3
Integrating factor is: e^{-t}
Multiplying gives
(dx/dt-x)e^{-t}=-(e^{-t}+1)/3
(xe^{-t})\'=-(e^{-t}+1)/3
Integrating gives
xe^{-t}=e^{-t}/3-t/3+C
y=1-4x-e^t=1-4(e^{-t}/3-t/3+C)-e^t
x=1/3-te^{t}/3+Ce^t

