Assume that the weights of a male students X is normally dis
Assume that the weights of a male students, X is normally distributed with a mean weight of 160 pounds and standard deviation of 20 pounds. out of 1000 men, how many students weigh more than or exactly 190 pounds?
Solution
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    190      
 u = mean =    160      
           
 s = standard deviation =    20      
           
 Thus,          
           
 z = (x - u) / s =    1.5      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1.5   ) =    0.066807201
Thus, we expect 0.066807201*1000
= 66.807201 OR AROUND 67 students [ANSWER]

