The inside diameter of a randomly selected piston ring is a
The inside diameter of a randomly selected piston ring is a random variable with mean value 15 cm and standard deviation 0.08 cm. Suppose the distribution of the diameter is normal. (Round your answers to four decimal places.)
(a) Calculate
P(14.99 X 15.01)
when n = 16.
P(14.99 X 15.01)
=  
 
 (b) How likely is it that the sample mean diameter exceeds 15.01 when n = 25?
P(X 15.01)
=
 You may need to use the appropriate table in the Appendix of Tables to answer this question.
Solution
Normal Distribution
 Mean ( u ) =15
 Standard Deviation ( sd )=0.08
 Normal Distribution = Z= X- u / sd ~ N(0,1)                  
 a)
 To find P(a < = Z < = b) = F(b) - F(a)
 P(X < 14.99) = (14.99-15)/0.08
 = -0.01/0.08 = -0.125
 = P ( Z <-0.125) From Standard Normal Table
 = 0.45026
 P(X < 15.01) = (15.01-15)/0.08
 = 0.01/0.08 = 0.125
 = P ( Z <0.125) From Standard Normal Table
 = 0.54974
 P(14.99 < X < 15.01) = 0.54974-0.45026 = 0.0995                  
WHEN n=16
To find P(a <= Z <=b) = F(b) - F(a)
 P(X < 14.99) = (14.99-15)/0.08/ Sqrt ( 16 )
 = -0.01/0.02
 = -0.5
 = P ( Z <-0.5) From Standard Normal Table
 = 0.30854
 P(X < 15.01) = (15.01-15)/0.08/ Sqrt ( 16 )
 = 0.01/0.02 = 0.5
 = P ( Z <0.5) From Standard Normal Table
 = 0.69146
 P(14.99 < X < 15.01) = 0.69146-0.30854 = 0.3829      
           
 b)
 P(X < 15.01) = (15.01-15)/0.08/ Sqrt ( 25 )
 = 0.01/0.016= 0.625
 = P ( Z <0.625) From Standard NOrmal Table
 = 0.734                  
 P(X > = 15.01) = 1 - P(X < 15.01)
 = 1 - 0.734 = 0.266                  

