In New York City a study was conducted to evaluate whether a
Solution
a)
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.088888889          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.042423174          
               
 Now, for the critical z,              
 alpha/2 =   0.05          
 Thus, z(alpha/2) =    1.644853627          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.069779911          
 lower bound = p^ - z(alpha/2) * sp =   0.019108978          
 upper bound = p^ + z(alpha/2) * sp =    0.1586688          
               
 Thus, the confidence interval is              
               
 (   0.019108978   ,   0.1586688   ) [ANSWER]
*******************
b)
Ho: p = 0.22
 Ha: p =/= 0.22 [ANSWERS]
**********************
c)
Formulating the null and alternatuve hypotheses,          
           
 Ho:   p   =   0.22
 Ha:   p   =/=   0.22
 As we see, the hypothesized po =   0.22      
 Getting the point estimate of p, p^,          
           
 p^ = x / n =    0.088888889      
           
 Getting the standard error of p^, sp,          
           
 sp = sqrt[po (1 - po)/n] =    0.061752193      
           
 Getting the z statistic,          
           
 z = (p^ - po)/sp =    -2.123181459      
           
 As this is a    2   tailed test, then, getting the p value,  
           
 p =    0.033738649      
significance level = 0.05
As P < 0.05, we REJECT THE NULL HYPOTHESIS.
***********************
d)
Thus, there is sigificant evidence that the proportion of mothers with more than 12 years of schooling in this special education program is different from 22%.


