Compute the sample mean sample variance and sample standard
Compute the sample mean, sample variance and sample standard deviation.
| 136 | 169 | 120 | 128 | 129 | 
| 143 | 115 | 146 | 96 | 86 | 
Solution
Getting the mean, X,          
           
 X = Sum(x) / n          
 Summing the items, Sum(x) =    1268      
 As n =    10      
 Thus,          
 X =    126.8   [ANSWER, SAMPLE MEAN]
**********************************  
           
 Setting up tables,          
 x   x - X   (x - X)^2  
 136   9.2   84.64  
 169   42.2   1780.84  
 120   -6.8   46.24  
 128   1.2   1.44  
 129   2.2   4.84  
 143   16.2   262.44  
 115   -11.8   139.24  
 146   19.2   368.64  
 96   -30.8   948.64  
 86   -40.8   1664.64  
Thus, Sum(x - X)^2 =    5301.6      
           
 Thus, as           
           
 s^2 = Sum(x - X)^2 / (n - 1)          
           
 As n =    10      
           
 s^2 =    589.0666667   [ANSWER, SAMPLE VARIANCE]
****************************  
           
 Thus,          
           
 s =    24.27069564   [ANSWER, SAMPLE STANDARD DEVIATION]
****************************

