Use Lagrange multipliers to find the minimum and maximum val

Use Lagrange multipliers to find the minimum and maximum values of

x^(2)*y+x+y subject to xy=4

Solution

x2 y + x + y = ?

xy = 4

x2y + x + y -(xy) = 0 where is a scalar

take partial derivative wrt x:

2xy + 1 - y = 0 = >    y = 9/

x = 4/9

take partial derivative wrt y

x2 + 1 - x = 0

162 / 81 + 1 - (4/9)=0

20/81 2 = 1

= ±9/20

x = (4/9)(9/20) =    2/5   ,   y= 25

when = -9/20

x = -2/5   , -25   

maximum value of f(x) =   5(2/5) + 25   = 45

minimum value = 5(-2/5) -25   =   -45 answer !!!!

ut value here in this equation

Use Lagrange multipliers to find the minimum and maximum values of x^(2)*y+x+y subject to xy=4Solutionx2 y + x + y = ? xy = 4 x2y + x + y -(xy) = 0 where is a s

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site