In the EAI sampling problem the population mean is 51100 and
In the EAI sampling problem, the population mean is $51,100 and the population standard deviation is $4,000. When the sample size is n = 20, there is a 0.4972 probability of obtaining a sample mean within +/- $600 of the population mean.
a. What is the probability that the sample mean is within $600 of the population mean if a sample of size 40 is used (to 4 decimals)?
b. What is the probability that the sample mean is within $600 of the population mean if a sample of size 80 is used (to 4 decimals)
Solution
A)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    50500      
 x2 = upper bound =    51700      
 u = mean =    51100      
 n = sample size =    40      
 s = standard deviation =    4000      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -0.95      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    0.95      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.1711      
 P(z < z2) =    0.8289      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.6578       [ANSWER]
********************
b)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    50500      
 x2 = upper bound =    51700      
 u = mean =    51100      
 n = sample size =    80      
 s = standard deviation =    4000      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -1.34      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.34      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.0901      
 P(z < z2) =    0.9099      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.8198       [ANSWER]

