A STAT 200 instructor is interested in whether there is any
A STAT 200 instructor is interested in whether there is any variation in the final exam grades between her two classes Data collected from the two classes are as follows:
Section 1: n1=28 x1= 80 s1=16
Section 2: n2=25 x2= 75 s2= 12
(a) Determine the test statistic.
(b) Determine the P-value for this test.
(c) Is there sufficient evidence to justify the rejection of 0 H at the significance level of 0.05?
 Explain.
Solution
A)
Formulating the null and alternative hypotheses,              
               
 Ho:   u1 - u2   =   0  
 Ha:   u1 - u2   =/   0  
 At level of significance =    0.05          
 As we can see, this is a    two   tailed test.      
 Calculating the means of each group,              
               
 X1 =    80          
 X2 =    75          
               
 Calculating the standard deviations of each group,              
               
 s1 =    16          
 s2 =    12          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    28          
 n2 = sample size of group 2 =    25          
 Thus, df = n1 + n2 - 2 =    51          
 Also, sD =    3.860421887          
               
 Thus, the t statistic will be              
               
 t = [X1 - X2 - uD]/sD =    1.295195227   [ANSWER, TEST STATISTIC]      
****************************************************
               
 B)
               
 Also, using p values,   as df = 51,          
               
 p =    0.201085366   [ANSWER, P VALUE]      
               
 c)
Comparing p > 0.05,    WE FAIL TO REJECT THE NULL HYPOTHESIS.          
               
 Thus, there no sufficient evidence to justify the rejection of Ho at the significance level of 0.05.

