Use the information about the angle theta 0 or equal to thet
Use the information about the angle theta, 0< or equal to theta < or equal to 2 pi, to find the exact value of each trignometric function.
tan theta= -9, sin theta < 0
(a) sin (2 theta)
(b) cos (2 theta)
(c) sin theta/2
(d) cos theta/2
Solution
given tan theta= -9, sin theta < 0,0< or equal to theta < or equal to 2 pi
from the information tan and sine are negative so theta lies in 4 th quadrant => cos theta is positive
tan theta= -9/1
tan theta= oppositeside /adjacent side =-9/1
opposite side =9 ,adjacent side =1
by pythogorus theorem hypotenuse2=opposite side2+adjacent side2
hypotenuse2=81+1
hypotenuse =82
cos theta =adjacent side /hypotenuse =1/82,sin theta =opposite side /hypotenuse =-9/82
(a) sin (2 theta)=2sintheta costheta =2*(-9/82)(1/82) =-18/82 =-9/41
(b) cos (2 theta)=2(cos2theta) -1 =2(1/82)2 -1 =(1/41) -1 =-40/41
0< or equal to theta < or equal to 2 pi
0< or equal to theta/2 < or equal to pi
in 0< or equal to theta/2 < or equal to pi , sine is positive
(c) sin theta/2 =[[1-costheta]/2] =[[1-(1/82)]/2] =0.667
chnen cos theta >0 ,0< or equal to theta/2 < or equal to pi , cos is negative
(d) cos theta/2=[[1+costheta]/2] =-[[1+(1/82)]/2] =-0.745
