Please show all work to justify final answer and answer both
Please show all work to justify final answer and answer both parts. Thank you.
A particular basketball player has a free-throw percentage of 92%. Assume they take 20 free throws in practice. What is the probability of making exactly 15? Of making more than 18?
Solution
a)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    20      
 p = the probability of a success =    0.92      
 x = the number of successes =    15      
           
 Thus, the probability is          
           
 P (    15   ) =    0.014544912 [answer]
b)
Note that P(more than x) = 1 - P(at most x).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.92      
 x = our critical value of successes =    18      
           
 Then the cumulative probability of P(at most x) from a table/technology is          
           
 P(at most   18   ) =    0.483144359
           
 Thus, the probability of at least   19   successes is  
           
 P(more than   18   ) =    0.516855641 [ANSWER]

