Assume the average weight of the adult male is normally dist
 Assume the average weight of the adult male is normally distributed with s mean of 69.5 and standar deviation of 2.4. What percentage of males in population have a height between 66.63 and 72.86? 
 0.4186
 0.7521
 0.5265
 0.8041
 0.9430
 0.8063
  Assume the average weight of the adult male is normally distributed with s mean of 69.5 and standar deviation of 2.4. What percentage of males in population have a height between 66.63 and 72.86? 
 0.4186
 0.7521
 0.5265
 0.8041
 0.9430
 0.8063
 0.4186
 0.7521
 0.5265
 0.8041
 0.9430
 0.8063
Solution
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    66.63      
 x2 = upper bound =    72.86      
 u = mean =    69.5      
           
 s = standard deviation =    2.4      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.195833333      
 z2 = upper z score = (x2 - u) / s =    1.4      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.115880803      
 P(z < z2) =    0.919243341      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.8041 [ANSWER, OPTION D]      

