A university found that 30 of its students withdraw without
A university found that 30% of its students withdraw without completing the introductory statistics course. Assume that 20 students registered for the course.
Compute the probability that 2 or fewer will withdraw (to 4 decimals).
   
Compute the probability that exactly 4 will withdraw (to 4 decimals).
   
Compute the probability that more than 3 will withdraw (to 4 decimals).
   
Compute the expected number of withdrawals.
Solution
a)
Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.3      
 x = the maximum number of successes =    2      
           
 Then the cumulative probability is          
           
 P(at most   2   ) =    0.035483132 [ANSWER]
**************
b)
Note that the probability of x successes out of n trials is          
           
 P(n, x) = nCx p^x (1 - p)^(n - x)          
           
 where          
           
 n = number of trials =    20      
 p = the probability of a success =    0.3      
 x = the number of successes =    4      
           
 Thus, the probability is          
           
 P (    4   ) =    0.130420974 [ANSWER]
***************
c)
Note that P(more than x) = 1 - P(at most x).          
           
 Using a cumulative binomial distribution table or technology, matching          
           
 n = number of trials =    20      
 p = the probability of a success =    0.3      
 x = our critical value of successes =    3      
           
 Then the cumulative probability of P(at most x) from a table/technology is          
           
 P(at most   3   ) =    0.107086805
           
 Thus, the probability of at least   4   successes is  
           
 P(more than   3   ) =    0.892913195 [ANSWER]
*********************
d)
E(x) = n p = 20*0.3 = 6 [ANSWER]


