10 A random sample of 90 observations produced a sample mean
10. A random sample of 90 observations produced a sample mean (X-bar) of 25.9 and
a standard deviation s = 2.7. Find an approximate 95% confidence interval for the population mean µ. ____________________________________________
Solution
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.025          
 X = sample mean =    25.9          
 z(alpha/2) = critical z for the confidence interval =    1.959963985          
 s = sample standard deviation =    2.7          
 n = sample size =    90          
               
 Thus,              
 Margin of Error E =    0.557815529          
 Lower bound =    25.34218447          
 Upper bound =    26.45781553          
               
 Thus, the confidence interval is              
               
 (   25.34218447   ,   26.45781553   ) [ANSWER]

