Simplify the trigonometric expression sin4x 2an2x using Dou
Simplify the trigonometric expression sin(4x) + 2an(2x) using Double-Angle Identities. 8sin(x)cos^3(x) 8sin(x)cos^3(x) - 8sin(x)cos(x) 8sin(x)cos^3(x) - 4sin^3(x)cos(x) 8sin(x)cos^3(x)+8sin(x)cos(x)
Solution
sin(4x) +2sin(2x)
sin(2a) =2sin(a)cos(a)
=2sin(2x)cos(2x) +2sin(2x)
=2sin(2x) [cos(2x) +1]
sin(2a) =2sin(a)cos(a),cos(2a) =cos2(a)-sin2(a) ,sin2(a) +cos2(a) =1
=2(2sin(x)cos(x)) [cos2(x)-sin2(x) +sin2(x) +cos2(x)]
=4sin(x)cos(x) [2cos2(x)]
=8sin(x)cos3(x)
sin(4x) +2sin(2x)=8sin(x)cos3(x)
