Simplify the trigonometric expression sin4x 2an2x using Dou

Simplify the trigonometric expression sin(4x) + 2an(2x) using Double-Angle Identities. 8sin(x)cos^3(x) 8sin(x)cos^3(x) - 8sin(x)cos(x) 8sin(x)cos^3(x) - 4sin^3(x)cos(x) 8sin(x)cos^3(x)+8sin(x)cos(x)

Solution

sin(4x) +2sin(2x)

sin(2a) =2sin(a)cos(a)

=2sin(2x)cos(2x) +2sin(2x)

=2sin(2x) [cos(2x)  +1]

sin(2a) =2sin(a)cos(a),cos(2a) =cos2(a)-sin2(a) ,sin2(a) +cos2(a) =1

=2(2sin(x)cos(x)) [cos2(x)-sin2(x)  +sin2(x) +cos2(x)]

=4sin(x)cos(x) [2cos2(x)]

=8sin(x)cos3(x)

sin(4x) +2sin(2x)=8sin(x)cos3(x)

 Simplify the trigonometric expression sin(4x) + 2an(2x) using Double-Angle Identities. 8sin(x)cos^3(x) 8sin(x)cos^3(x) - 8sin(x)cos(x) 8sin(x)cos^3(x) - 4sin^3

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site