In a large population of collegeeducated adults the mean IQ
Solution
Parameters are for populations, and statistics are for samples.
a)
D. BOTH A AND B.
*******************
b)
C. the sample mean IQ xbar calculated from the 100 college-educated adults [ANSWER]
***************
c)
By central limit theorem,
OPTION C: approx Normal, mean 115, standard deviation 2. [ANSWER]
This is because the mean stays the same, and the standard deviation gets divided by sqrt(n), and n = 100 here.
******************
d)
We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
 x1 = lower bound =    110      
 x2 = upper bound =    120      
 u = mean =    115      
 n = sample size =    100      
 s = standard deviation =    20      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u) * sqrt(n) / s =    -2.5      
 z2 = upper z score = (x2 - u) * sqrt(n) / s =    2.5      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.006209665      
 P(z < z2) =    0.993790335      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.987580669 = 0.9876 [ANSWER, B]      

