Find the particular solution of the differential equation dy
     Find the particular solution of the differential equation dy / dx = (x - 5) e -2y satisfying the initial condition  y(5) = ln(5).  y =  Your answer should be a function of x. 
  
  Solution
dye^2y=(x-5)dx
 ==>e^2y /2= (x^2 /2 -5x)+c
 ==>e^2y=(x^2 -10x)+c
 y(5)=ln5
 ==>25=(25-50)+c
 ==>c=50
 ==>e^2y=(x^2 -10x)+50
 ==>y=1/2 ln((x^2 -10x)+50)
 =>y=ln((x^2 -10x)+50)

