Solve via simplex and matlab Maximize p 3x 6y 5z subject
Solve via simplex and matlab
Maximize p = 3x + 6y + 5z
subject to
2x + 4y + 8z <= 12
x + 6y - z = 6
4x - y + 3z >= 8
Solution
Given:
Maximize p = 3x + 6y + 5z
and subject to
2x + 4y + 8z <= 12
x + 6y - z = 6
4x - y + 3z >= 8
if we solve this as below formate.
Table #1
==========================================================
x y z s1 s2 s3 s4 p
==========================================================
2 4 8 1 0 0 0 0 12
1 6 -1 0 1 0 0 0 6
4 -1 3 0 0 -1 0 0 8
1 6 -1 0 0 0 -1 0 6
-3 -6 -5 0 0 0 0 1 0
Table #2
==========================================================
x y z s1 s2 s3 s4 p
==========================================================
0 9 13 2 0 1 0 0 16
0 25 -7 0 4 1 0 0 16
4 -1 3 0 0 -1 0 0 8
0 25 -7 0 0 1 -4 0 16
0 -27 -11 0 0 -3 0 4 24
Table #3
==========================================================
x y z s1 s2 s3 s4 p
==========================================================
0 0 194 25 0 8 18 0 128
0 0 0 0 1 0 1 0 0
25 0 17 0 0 -6 -1 0 54
0 25 -7 0 0 1 -4 0 16
0 0 -116 0 0 -12 -27 25 258
Table #4
==========================================================
x y z s1 s2 s3 s4 p
==========================================================
0 0 194 25 0 8 18 0 128
0 0 0 0 1 0 1 0 0
194 0 0 -17 0 -52 -20 0 332
0 194 0 7 0 10 -26 0 160
0 0 0 58 0 -28 -63 97 1298
Table #5
==========================================================
x y z s1 s2 s3 s4 p
==========================================================
0 0 194 25 -18 8 0 0 128
0 0 0 0 1 0 1 0 0
194 0 0 -17 20 -52 0 0 332
0 194 0 7 26 10 0 0 160
0 0 0 58 63 -28 0 97 1298
Table #6
==========================================================
x y z s1 s2 s3 s4 p
==========================================================
0 0 194 25 -18 8 0 0 128
0 0 0 0 1 0 1 0 0
4 0 26 3 -2 0 0 0 24
0 8 -10 -1 2 0 0 0 0
0 0 14 3 0 0 0 2 36
Optimal Solution: p = 18; x = 6, y = 0, z = 0.

