minimize Q 6x23y2 where xy9SolutionQ 6x2 3y2 xy 9 x 9y s
minimize Q= 6x^2+3y^2 where x+y=9
Solution
Q = 6x^2 + 3y^2
x+y = 9
x = 9-y
substituting value of x in Q
Q = 6(9-y)^2 + 3y^2 = 6(81+y^2 - 18y ) + 3y^2 = 486 + 6y^2 - 108y + 3y^2
Q = 9y^2 - 108y + 486
Q\' = 18y - 108
set Q\' = 0 to find the minimum value
18y - 108 = 0
18y = 108
y = 6
x + y = 9
x + 6 = 9
x = 3
hence, Q = 6(3)^2 + 3(6)^2 = 162
