The critical values for y fx are as follows x 504 Using th
     The critical values for y = f(x) are as follows:  x = -5,0,4  Using the Second Derivative Test, determine which critical value(s) represent local minimums, given that:  f\"(x) = 3x2 + 2x - 20(points;1)  x = -5,0,4  x = -5, 4  x = 0, 4  x = 0 
  
  Solution
f\'\'(-5) = 75 - 10 - 20 > 0 So minimum f\'\'(0) = -20 <0 so maxima f\'\'(4) = 48+8 - 20 > 0 so minimum So [b]
