The average expenditure on Valentines Day was expected to be
The average expenditure on Valentine\'s Day was expected to be $100.89 (USA Today, February 13, 2006). Do male and female consumers differ in the amounts they spend? The average expenditure in a sample survey of 42 male consumers was $139, and the average expenditure in a sample survey of 33 female consumers was $67. Based on past surveys, the standard deviation for male consumers is assumed to be $32, and the standard deviation for female consumers is assumed to be $16. The z value is 2.576 .
Round your answers to 2 decimal places.
a. What is the point estimate of the difference between the population mean expenditure for males and the population mean expenditure for females?
b. At 99% confidence, what is the margin of error?
c. Develop a 99% confidence interval for the difference between the two population means.
Solution
a)
X1 =    139
 X2 =    67
 Thus, the point estimate is
X1 - X2 = 72 [ANSWER]
*********************
b)
Calculating the standard deviations of each group,              
               
 s1 =    32          
 s2 =    16          
               
 Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
               
 n1 = sample size of group 1 =    42          
 n2 = sample size of group 2 =    33          
 Thus, df = n1 + n2 - 2 =    73          
Also, sD = 5.6690853
Note that
Margin of error = z*alpha/2 * sD
   
 Thus,
Margin of error = 14.60259604 [ANSWER]
***********************
 c)
           
 Lower Bound = X - z(alpha/2) * sD              
 Upper Bound = X + z(alpha/2) * sD              
               
 where              
               
 alpha/2 = (1 - confidence level)/2 =    0.005          
               
 Thus,              
X = sample mean = 72
z(alpha/2) = critical z for the confidence interval = 2.575829304
sD = standard error =    5.6690853          
               
               
 Thus,              
               
 Lower bound =    57.39740396          
 Upper bound =    86.60259604          
               
 Thus, the confidence interval is              
               
 (   57.39740396   ,   86.60259604   ) [ANSWER]


