Fourier Transform using MATLAB Symbolic Math toolbox only of
Fourier Transform (using MATLAB Symbolic Math toolbox only) of
and
Solution
Solutions:
Functions can be directly defined using symbolic tool box.
\'syms\' command defines a symbol.
\'fourier(f)\' directly gives the symbolic fourier transform of f
e-at will not have fourier transform. Insted we used e-atU(t) by using heaviside function of MATLAB.
The MATLAB CODE is given below
--------------------------------------------------------
syms t
a=3;
w0=20*pi;
f1 = exp(-a*t)*heaviside(t);
F1=fourier(f1)
f2=sin(w0*t);
F2=fourier(f2)
---------------------------------------------------------
The output (shown below) gives F1 and F2 which are fourier transforms of given functions respectively.
>> fourier_symb
F1 =
1/(w*i + 3)
F2=
-pi*(dirac(w - 20*pi) - dirac(20*pi + w))*i
-----------------------------------------------------------------
dirac means unit impulse function
