The noise voltage in an electric circuit follows a Gaussian
Solution
a)
Find the probability that the value of the noise exceeds 10^-4.
We first get the z score for the critical value. As z = (x - u) / s, then as          
           
 x = critical value =    0.0001      
 u = mean =    0      
           
 s = standard deviation =    0.0001      
           
 Thus,          
           
 z = (x - u) / s =    1      
           
 Thus, using a table/technology, the right tailed area of this is          
           
 P(z >   1   ) =    0.158655254 [ANSWER]
*************************
b)
Given that the value of the noise is positive, calculate the probability that the value exceeds 10^-4.
As the mean is 0, then half of the noise values is positive, P(x>0) = 0.5.
Thus,
P(x>0.0001|x>0) = P(x>0.0001)/P(x>0) = 0.158655254/0.5
= 0.317310508 [ANSWER]

