A survey found that womens heights are normally distributed
A survey found that women\'s heights are normally distributed with mean 62.4in. and standard deviation 2.9 in. The survey also found that men\'s heights are normally distributed with a mean 68.5in. and standard deviation 2.9.
Complete parts a through c below.
a. Most of the live characters at an amusement park have height requirements with a minimum of 4 ft 9 in. and a maximum of 6 ft 4 in. Find the percentage of women meeting the height requirement.
The percentage of women who meet the height requirement is _________
(Round to two decimal places as needed.)
b. Find the percentage of men meeting the height requirement.
The percentage of men who meet the height requirement is __________
(Round to two decimal places as needed.)
c. If the height requirements are changed to exclude only the tallest 5% of men and the shortest 5% of women, what are the new height requirements?
The new height requirements are at least _________ in. and at most _________in.
(Round to one decimal place as needed.)
Solution
A)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    57      
 x2 = upper bound =    76      
 u = mean =    62.4      
           
 s = standard deviation =    2.9      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -1.862068966      
 z2 = upper z score = (x2 - u) / s =    4.689655172      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    0.031296685      
 P(z < z2) =    0.999998632      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.968701947 OR 96.87% [answer]
*********************
B)
We first get the z score for the two values. As z = (x - u) / s, then as          
 x1 = lower bound =    57      
 x2 = upper bound =    76      
 u = mean =    68.5      
           
 s = standard deviation =    2.9      
           
 Thus, the two z scores are          
           
 z1 = lower z score = (x1 - u)/s =    -3.965517241      
 z2 = upper z score = (x2 - u) / s =    2.586206897      
           
 Using table/technology, the left tailed areas between these z scores is          
           
 P(z < z1) =    3.66185E-05      
 P(z < z2) =    0.995148067      
           
 Thus, the area between them, by subtracting these areas, is          
           
 P(z1 < z < z2) =    0.995111448 or 99.51% [ANSWER]
 **********************
c)
For tallest 5% of men:
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.95      
           
 Then, using table or technology,          
           
 z =    1.644853627      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    68.5      
 z = the critical z score =    1.644853627      
 s = standard deviation =    2.9      
           
 Then          
           
 x = critical value =    73.27007552   [ANSWER]
*****
For shortest 5% of women:
First, we get the z score from the given left tailed area. As          
           
 Left tailed area =    0.05      
           
 Then, using table or technology,          
           
 z =    -1.644853627      
           
 As x = u + z * s,          
           
 where          
           
 u = mean =    62.4      
 z = the critical z score =    -1.644853627      
 s = standard deviation =    2.9      
           
 Then          
           
 x = critical value =    57.62992448   [ANSWER]
Thus, the new height requirements are at least 57.6 in and at most 73.3 in. [ANSWER]  
   
       
       



