sin2 theta cos2 theta 1 cos theta REQUIRED Algebraically
sin^2 theta - cos^2 theta = 1 + cos theta REQUIRED Algebraically solve the given equation on the interval 0 lessthanorequalto theta lessthanorequalto 2pi.
Solution
let us assume theta= \'x\'
so the given equation becomes sin^2x -cos^2x = 1+cosx ----->1
from identity sin^2x +cos^2x =1
so sin^2x = 1-cos^2x
plug it in equation1
1-cos^2x-cos^2x = 1+cosx
1-2cos^2x =1+cosx
2cos^2x+cosx=0
cosx(2cosx+1)=0
cosx=0 or (2cosx +1)=0
x= pi/2,3pi/2 or 2cosx =-1
x =pi/2,3pi/2 or cosx =-1/2
x=pi/2,3pi/2 or x= 2pi/3, 4pi/3
the value of theta are pi/2,2pi/3,4pi/3,3pi/2
