Assume the interval 2022 is a 998 confidence interval for me
Assume the interval (20,22) is a 99.8% confidence interval for mean with n=16 (assume the population standard deviation is unkown), find:
(a) The sample mean.
(b) The margin of error.
(c) The sample standard deviation.
(d) The 90% confidence interval for the mean.
Solution
(a) The sample mean.
(20+22)/2 =21
--------------------------------------------------------------------------------------------------------------
(b) The margin of error.
(22-20)/2 =1
--------------------------------------------------------------------------------------------------------------
(c) The sample standard deviation.
The degree of freedom =n-1=16-1=15
Given a=1-0.998=0.002, t(0.001, df=15) =3.73 (from student t table)
t*s/vn = 1
--> 3.73*s/sqrt(16) =1
So s =4/3.73 =1.072386
--------------------------------------------------------------------------------------------------------------
(d) The 90% confidence interval for the mean
Given a=1-0.9=0.1, t(0.05, df=15) =1.75 (from student t table)
So the lower bound is
xbar - t*s/vn=21 - 1.75*1.072386/sqrt(16) =20.53083
So the upper bound is
xbar + t*s/vn =21 + 1.75*1.072386/sqrt(16)=21.46917
