Find the partial fraction decomposition of the rational func
Find the partial fraction decomposition of the rational function f(x) given below (do show your work). f(x) = 4x^3 + 3x^2 + 5x - 2/x^3(x + 2)
Solution
f(x)=(4x^3 + 3x^2 + 5x -2)/(x^3)(x+2)
(4x^3+3x^2+5x-2)/x^3(x+2)=A/x + B/x^2 + C/x^3 + D/(x+2)
= (Ax^2(x+2) + Bx(x+2)+ C(x+2) +Dx^3)/(x^3(x+2))
= (Ax^3+ 2Ax^2+ Bx^2+2Bx+Cx+2C+Dx^3)/(x^3(x+2))
Writing like terms together
(4x^3+3x^2+5x-2)/(x^3(x+2)) = (x^3(A+D) + x^2(2A+B)+x(2B+C) +2C)/(x^3(x+2))
Comparing both sides,we get
A+D=4, 2A+B=3,2B+C=5,2C=-2
Solving them
We get A=0,B=3,C=-1,D=4
Therefore the required partial decomposition is
=0/x + 3/x^2 -1/x^3 + 4/(x+2)
=3/x^2 -1/x^3 + 4/(x+2)
