Each cord can sustain a maximum tension of 510 N Determine t
Solution
Solution :
Assume that P is the weight of pipe .
AP is vector of this weight
AK, AI=BM ,BJ,BL are the forces apply to these cords AE,AB,BC,BD respectly .
The angle PAI = 90º - 60º = 30º ( because KAP = 90* and BAI is straight angle)
In the right triangle :
AI= BM = AP/sin60º x AK = PI= AP/tan60º
And then we have:
<BLM = <BJM = arc sin 3/5 = 36.87º
( < means angle )
<MBJ = 60º---> BMJ = 180º - ( 36.87º + 60º) = 83.13º
Apply sine method :
BJ/sin 83.13º = JM/sin60º = BM/sin 36.87º
----> BJ = 1.65 BM ; BL = 1.44 BM
We prove above , BM= AP/sin60º
Therefore the force applies to BC cord is biggest ,and it equals 1.65BM =1.65 X AP/sin 60º = 1.9AP
Because Each cord can sustain a maximum tension of 500 N ,so the maximum weight of pipe is :
1.9 AP = 510 N ------> AP = 268.42N
With the gravity is 9.81 ,the maximum mass of pipe is :
m = 268.42/9.81 =27.36 kg
