Consider a linear regression of response variable Y Y1 Yn
     Consider a linear regression of response variable Y = (Y1,.  . ,Yn) on a predictor variable X = (X1,.  .  Xn) The least-squares estimates of intercept and slope, alpha and Beta, are the values minimizing the function:  d(alpha,Beta) = Sigma n to i = 1 {Yi - (alpha + BetaXi)}2  Further, predicted values are y(x) = alpha + Beta x. Find y(X bar), where X bar is the average of the Xis.  
  
  Solution
yhat(xbr)=E(alpha+betax)
yhat(xbar)=alpha+beta xbar

