A random sample of size n 130 yielded p hat 8 Is the sample
A random sample of size n = 130 yielded p hat .8
Is the sample large enough to construct a valid confidence interval for p? Explain.
Construct a 95% confidence interval for p.
Solution
As
np = 130*0.8 = 104 > 10
 nq = 130*0.2 = 26 > 10
then it is large enough.
Note that              
               
 p^ = point estimate of the population proportion = x / n =    0.8          
               
 Also, we get the standard error of p, sp:              
               
 sp = sqrt[p^ (1 - p^) / n] =    0.035082321          
               
 Now, for the critical z,              
 alpha/2 =   0.025          
 Thus, z(alpha/2) =    1.959963985          
 Thus,              
 Margin of error = z(alpha/2)*sp =    0.068760085          
 lower bound = p^ - z(alpha/2) * sp =   0.731239915          
 upper bound = p^ + z(alpha/2) * sp =    0.868760085          
               
 Thus, the confidence interval is              
               
 (   0.731239915   ,   0.868760085   ) [ANSWER]

