Using alpha 005 perform a hypothesis test to determine if t
Solution
A)
Let ud = u2 - u1.              
 Formulating the null and alternative hypotheses,              
               
 Ho:   ud   >=   -60  
 Ha:   ud   <   -60  
 At level of significance =    0.05          
 As we can see, this is a    left   tailed test.      
               
 Calculating the standard deviation of the differences (third column):              
               
 s =    14.62537231          
               
 Thus, the standard error of the difference is sD = s/sqrt(n):              
               
 sD =    4.22198132          
               
 Calculating the mean of the differences (third column):              
               
 XD =    -69.91666667          
               
 As t = [XD - uD]/sD, where uD = the hypothesized difference =    -60   , then      
               
 t =    -2.348818224          
               
 As df = n - 1 =    11          
               
 Then the critical value of t is              
               
 tcrit =    -   2.20098516      
               
               
 As t < -2.20098, WE REJECT THE NULL HYPOTHESIS.          
Thus, there is significant evidence that the average LDL level is more than 60 points lower for patients who have taken the new medication.
**********************************
b)              
               
 As we can see, using a table,
0.01 < P < 0.025. [ANSWER]
**********************************              
 c)      
               
 For the   0.9   confidence level,      
               
 alpha/2 = (1 - confidence level)/2 =    0.05          
 t(alpha/2) =    1.795884819          
               
 lower bound = [X1 - X2] - t(alpha/2) * sD =    -77.49885882          
 upper bound = [X1 - X2] + t(alpha/2) * sD =    -62.33447451          
               
 Thus, the confidence interval is              
               
 (   -77.49885882   ,   -62.33447451   ) [ANSWER]
*****************************
d)
I actually used Excel to construct the interval above. If you need another approach for part c), please resubmit and indicate what method has to be used in c). Thanks!
********************************
               
 e)
As df = n - 1 = 11, and since this is left tailed,
p = 0.019283816 [ANSWER]
*************************
f)
We assume that the populations from which these scores came from are approximately normally distributed.      
               
               


