Solving this problem using the statistical program R on the
Solving this problem using the statistical program R on the computer:
 Let Z  N(0, 1). Find a constant c for which (
 a) P(Z  c) = 0.1587
 (b) P(c  Z  0) = 0.4772
 (c) P(c  Z  c) = 0.8664
 (d) P(0  Z  c) = 0.2967
 (e) P(|Z|  c) = 0.1470
Solution
here Z~N(0,1)
the R code is given as---
### Z~N(0,1)
 ##a)
 qnorm(0.1587,0,1,lower.tail=FALSE)
 ##b)
 qnorm(0.5-0.4772,0,1)
 ##c)
 qnorm((0.8664+1)/2,0,1)
 ##d)
 qnorm(0.5+0.2967,0,1)
 ##e)
 qnorm((2-0.1470)/2,0,1)
description
a) it is directly from the R code. lower.tail=FALSE means P[X>x] type of probability is calculated.
b) P[c<=Z<=0]=0.4772 => P[Z<=0]-P[Z<=c]=0.4772 =>0.5-P[Z<=c]=0.4772 =>P[Z<=c]=0.5-0.4772
c) P[-c<=Z<=c]=0.8664 => P[Z<=c]-P[Z<=-c]=0.8664 => P[Z<=c]-[1-P[Z<=c]]=0.8664 =>P[Z<=c]=(0.8664+1)/2
d) P[0<=Z<=c]=0.2967 => P[Z<=c]-P[Z<=0]=0.2967 =>P[Z<=c]=0.2967+0.5
e) P[|Z|>=c]=0.1470 => P[Z>=c]+P[Z<=-c]=0.1470 => 1-P[Z<=c]+1-P[Z<=c]=0.1470 =>P[Z<=c]=(2-0.1470)/2
answer
a)0.9998151
b)-1.999077
c)1.500056
d)0.8298917
e)1.45021

