Solve 1nx 1 2 Inx1Solutionlnx1 2 lnx1 lnx1 lnx1 2 l

Solve: 1n(x + 1) = 2 + In(x-1)

Solution

ln(x+1) = 2 + ln(x-1)

=> ln(x+1) - ln(x-1) = 2

=> ln[(x+1)/(x-1)] = 2 ...(Using ln(a)-ln(b) = ln(a/b))

=> (x+1)/(x-1) = e2

=> (x+1) = e2(x-1)

=> x(1-e2) = -e2-1

=> x = -(e2+1)/(1-e2) = (e2+1)/(e2-1)

Hence x =  (e2+1)/(e2-1)

 Solve: 1n(x + 1) = 2 + In(x-1)Solutionln(x+1) = 2 + ln(x-1) => ln(x+1) - ln(x-1) = 2 => ln[(x+1)/(x-1)] = 2 ...(Using ln(a)-ln(b) = ln(a/b)) => (x+1)/

Get Help Now

Submit a Take Down Notice

Tutor
Tutor: Dr Jack
Most rated tutor on our site