Solve 1nx 1 2 Inx1Solutionlnx1 2 lnx1 lnx1 lnx1 2 l
Solve: 1n(x + 1) = 2 + In(x-1)
Solution
ln(x+1) = 2 + ln(x-1)
=> ln(x+1) - ln(x-1) = 2
=> ln[(x+1)/(x-1)] = 2 ...(Using ln(a)-ln(b) = ln(a/b))
=> (x+1)/(x-1) = e2
=> (x+1) = e2(x-1)
=> x(1-e2) = -e2-1
=> x = -(e2+1)/(1-e2) = (e2+1)/(e2-1)
Hence x = (e2+1)/(e2-1)
![Solve: 1n(x + 1) = 2 + In(x-1)Solutionln(x+1) = 2 + ln(x-1) => ln(x+1) - ln(x-1) = 2 => ln[(x+1)/(x-1)] = 2 ...(Using ln(a)-ln(b) = ln(a/b)) => (x+1)/ Solve: 1n(x + 1) = 2 + In(x-1)Solutionln(x+1) = 2 + ln(x-1) => ln(x+1) - ln(x-1) = 2 => ln[(x+1)/(x-1)] = 2 ...(Using ln(a)-ln(b) = ln(a/b)) => (x+1)/](/WebImages/23/solve-1nx-1-2-inx1solutionlnx1-2-lnx1-lnx1-lnx1-2-l-1054943-1761550229-0.webp)