You are given the following results of a paired difference
\" You are given the following results of a paired- difference test:
\"a. Construct and interpret a 99% confidence interval estimate for the paired difference in mean values.
b. Construct and interpret a 90% confidence interval estimate for the paired difference in mean values.
Please explain equations. Thanks.
gi 2 |d dnSolution
a)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    -4.6          
 t(alpha/2) = critical t for the confidence interval =    2.946712883          
 s = sample standard deviation =    0.25          
 n = sample size =    16          
 df = n - 1 =    15          
 Thus,              
 Margin of Error E =    0.184169555          
 Lower bound =    -4.784169555          
 Upper bound =    -4.415830445          
               
 Thus, the confidence interval is              
               
 (   -4.784169555   ,   -4.415830445   ) [ANSWER]
Note that 0 is not inside this interval. Thus, at 0.1 level, there is significant evidence that the means differ. [answer]
************************
b)
Note that              
 Margin of Error E = t(alpha/2) * s / sqrt(n)              
 Lower Bound = X - t(alpha/2) * s / sqrt(n)              
 Upper Bound = X + t(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.05          
 X = sample mean =    -4.6          
 t(alpha/2) = critical t for the confidence interval =    1.753050356          
 s = sample standard deviation =    0.25          
 n = sample size =    16          
 df = n - 1 =    15          
 Thus,              
 Margin of Error E =    0.109565647          
 Lower bound =    -4.709565647          
 Upper bound =    -4.490434353          
               
 Thus, the confidence interval is              
               
 (   -4.709565647   ,   -4.490434353   ) [ANSWER]
Note that 0 is not inside this interval. Thus, at 0.1 level, there is significant evidence that the means differ. [answer]


